Kirchhoff's Rules
ℰ₁= V,
r₁= Ω,
R₁= Ω,
ℰ₂= V,
r₂= Ω,
R₂= Ω,
R₃= Ω,
(r₁ + R₁ + R₃)(r₂ + R₂ + R₃)-R₃²= Ω²
ℰ₁(r₂ + R₂ + R₃)-ℰ₂R₃=VΩ
(r₁ + R₁ + R₃)ℰ₂-R₃ℰ₁=VΩ
I₁= A, A
I₂= A, A
Explanation, Derivation of Formulas:
I₁r₁ + I₁R₁ + I₃R₃ = ℰ₁,
I₂r₂ + I₂R₂ + I₃R₃ = ℰ₂,
I₃ = I₁ + I₂,
I₁r₁ + I₁R₁ + (I₁ + I₂)R₃ = ℰ₁,
I₂r₂ + I₂R₂ + (I₁ + I₂)R₃ = ℰ₂,
I₁r₁ + I₁R₁ + I₁R₃ + I₂R₃ = ℰ₁,
I₂r₂ + I₂R₂ + I₁R₃ + I₂R₃ = ℰ₂,
I₁(r₁ + R₁ + R₃) + I₂R₃ = ℰ₁,
I₁R₃ + I₂(r₂ + R₂ + R₃) = ℰ₂,
ax+by=p
cx+dy=q
a b x p
c d y q
x=(pd-qb)/(ad-cb)
y=(aq-cp)/(ad-cb)
I₁ = {ℰ₁(r₂ + R₂ + R₃)-ℰ₂R₃}/{(r₁ + R₁ + R₃)(r₂ + R₂ + R₃)-R₃²}
I₂ = {(r₁ + R₁ + R₃)ℰ₂-R₃ℰ₁}/{(r₁ + R₁ + R₃)(r₂ + R₂ + R₃)-R₃²}
Subscribe to:
Posts (Atom)
-
In an LC circuit, the self-inductance is L= .0×10 −2 H and the capacitance is C= .0×10 −6 F. At t =0, all of the energy is stored in the ...
-
When you are solving some physical problem, try to write your solution in the form of one symbolic equation, where on the left you have the...
-
The angular frequency of the oscillations in an LC circuit is .0×10 3 rad/s. If L= H, what is C? Solution: Calculate C= µC
No comments:
Post a Comment